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Abstract
We propose a three-order-parameter model to study the phase separations
in a diblock copolymer–diblock copolymer mixture. The cell dynamical
simulations provide rich information about the phase evolution and structural
formation, especially the appearance of onion-rings. The parametric
dependence and physical reason for the domain growth of onion-rings are
discussed.

1. Introduction

The phase-ordering dynamics in soft matter systems has attracted much attention in the past
two decades [1–7]. The microphase separation in block copolymers has been a hot topic
both experimentally and theoretically [8–18]. These studies facilitate the development of new
materials to achieve special properties. In the theoretical study of the general copolymer–
homopolymer mixtures, Hong and Noolandi suggested that after a macrophase separation
there would be a microphase separation in the copolymer-rich domain [8]. This prediction
was verified experimentally by Koizumi, Hasegawa, and Hashimoto in binary mixtures of
polystyrene–block–polyisoprene and homopolystyrene [10].

In recent years, field-theoretical approaches have been developed rapidly and adopted
extensively in the study of polymer materials by using component densities as variables.
A systematic acquaintanceship can be acquired in several excellent review articles [19–21].
Among various possible schemes based on mean-field approximations, the self-consistent field
theory [22, 23] and dynamic density functional theory [24, 25] are best known. They can be used
to obtain relatively detailed information of polymer mixtures,especially the static conformation
and phase diagrams of mixtures. On the other hand, the time-dependent Ginzburg–Landau
theory [26, 27], using the truncated expansions in a more complicated free energy compared
with the self-consistent field method and dynamic density functional method, has often been
applied to describe the dynamic behaviour of phase separations, in the situation where the
polymer–polymer interface tensions may be more dominant, while the details of polymeric
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chains can be ignored. In this way, much rich novel structure was discovered by Ohta and Ito
in their study on the phase separation in copolymer–homopolymer mixtures [9]. We have also
reported numerically the structural formation in this kind of binary mixtures by containing
mobile particles with a preferential interaction to one component [4].

It is interesting to note that so far less research has been done on the phase separation
of copolymer–copolymer mixtures, whether experimentally or theoretically. However, with
the development of industrial synthesis technology, it is more common that two different
copolymers could be mixed. Therefore, the study of the dynamics of phase separations is
obviously important for the mixtures composed of two different copolymers. In this paper, we
investigate the phase separation in a copolymer–copolymer mixture, and obtain rich domains
in this mixture. The other parts of this paper is organized as follows. Section 2 is devoted to
the description of the model and method. In section 3 the numerical results and discussions
are presented. Finally, a brief conclusion is given in section 4.

2. Model and method

We consider on a substrate surface there is a phase-separating film consisting of two different
diblock copolymers. Each copolymer chain of one diblock copolymer is composed of A and
B monomers with a short-range repulsive interaction between them, whereas that of the other
diblock copolymer is composed of C and D monomers, and the interaction between C and D
monomers is also short-range repulsive. The B monomers and D monomers in two different
copolymers are mutually incompatible with each other. The interaction between the mixture
and the substrate surface is assumed to be negligible, i.e., the substrate is neutral to the polymer
blend. In addition, the hydrodynamic effects, for simplicity, are ignored in the present model.
The coordinates of the planar surface are defined in the x and y directions.

For describing the system, several parameters are defined. NA, NB, NC, and ND

are the polymerization indices of blocks A, B, C, and D, respectively. In the case of
symmetric diblock copolymers which is considered here, the polymerization indices of
the A and B blocks are equal, that is also true for the C and D blocks. We use χi j

denote the interaction between monomers i and j , where i, j = A, B,C , and D. In the
process of phase separations, fluctuations are dominant, so we should investigate the local
volume fractions of monomers A, B, C, and D. They are denoted, respectively, by φA(x, y),
φB(x, y), φC(x, y), and φD(x, y). Under the incompressibility condition, that is the total
density φA(x, y) + φB(x, y) + φC(x, y) + φD(x, y) is constant, three of the local volume
fractions are independent. Therefore it is reasonable to take ψ(x, y) = φA(x, y) + φB(x, y),
φ(x, y) = φA(x, y) − φB(x, y), and ξ(x, y) = φC(x, y) − φD(x, y) as the independent
variables. These three quantities can be taken as the order parameters to describe the phase
behaviour of the system. Among them ψ(x, y) reflects the segregation of two different
copolymers, whereas φ(x, y) and ξ(x, y) give the local concentration differences between
monomers A and B and between monomers C and D, respectively.

It is natural here to propose a three-order-parameter model, developed from the previous
two-order-parameter model [9, 26, 27], in which the free-energy functional of the system is
given by

F = FL + FS. (1)

The long-range part FL is given by

FL = α

2

∫ ∫
dr dr′ G1(r, r

′)[φ(r)− φ0][φ(r′)− φ0]

+
β

2

∫ ∫
dr dr′ G2(r, r

′)[ξ(r)− ξ0][ξ(r′)− ξ0], (2)
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where α and β are positive constants. G1(r, r
′) and G2(r, r

′) are the Green functions defined
by the equations −∇2 G1(r, r

′) = δ1(r − r′) and −∇2 G2(r, r
′) = δ2(r − r′), while φ0 and

ξ0 are the spatial averages of φ and ξ , respectively. We should set φ0 = 0 and ξ0 = 0 in the
case of symmetric copolymers. In contrast to the long-range part, the short-range part FS is a
little more complicated and is given by

FS =
∫ ∫

dx dy

[
d1

2
(∇ψ)2 +

d2

2
(∇φ)2 +

d3

2
(∇ξ)2 + f (ψ, φ, ξ)

]
, (3)

where the d1, d2, and d3 terms correspond to the surface tensions. The local interaction term
f (ψ, φ, ξ) could be replaced by f (η, φ, ξ), where η = ψ −ψc [9] with ψc being the volume
fraction at the critical point of the macrophase separation of two different copolymers.

It is obvious that the important physical results will be mainly included in the local
interaction term f (η, φ, ξ). For further treatment, we can take its form in a phenomenological
approach [9] as

f (η, φ, ξ) = v1(η) + v2(φ) + v3(ξ) + b1ηφ − b11ηξ − 1
2 b2ηφ

2 + 1
2 b22ηξ

2, (4)

where the functions v1(η), v2(φ), and v3(ξ) are assumed to be even with respect to the
arguments. For two symmetric diblock copolymers, the η2φ term and the η2ξ term will
vanish, so they merge in our model. In fact, we can obtain f (η, φ, ξ) from the Flory–Huggins
free energy [28] for our four-monomer mixture as

f ({φi}) =
∑

i

1

Ni
φi ln φi +

∑
i j

χi jφiφ j , (5)

with i, j = A, B,C, D. According to the definitions of the three order parameters, the
local volume fractions φA, φB, φC, and φD can be replaced by η, φ, and ξ . Then by
expanding equation (5) in terms of the parameters η, φ, and ξ , we regain equation (4) in which
v1(η) = − 1

2 c1η
2 + 1

4µ1η
4 as well as for v2(φ) and v3(ξ). All the coefficients cs, µs, and bs are

determined, for example, b1 = (−χAC−χAD+χBC+χBD)/4, b11 = (−χAC+χAD−χBC+χBD)/4,
and b2 = b22 = (N−1/2

A + N−1/2
C )2/2 for NA = NB and NC = ND in the symmetric case. In

addition, the critical composition is also obtained asψc = N1/2
C /(N1/2

C + N1/2
A ). Without losing

generality, we take b1 and b2 as positive constants just like b2 and b22. The requirements for
b1 > 0 and b2 > 0 could be satisfied by adopting a relatively large repulsive interaction
between monomers B and D. It is now clear that the b1 term and b11 term originate from the
short-range interactive between monomers, whereas the b2 term and b22 term arise from the
conformation entropy of the copolymers. Equation (4) prescribes the minimal model of the
short-range part of the free energy in our system. From the b2 term and b22 term, one can
see that a microphase separation could occur in the copolymers. In fact, the b2 term implies
that a large absolute value of φ(x, y) is favourable in the region η(x, y) > 0, whereas the b22

term means that a large absolute value of ξ(x, y) is more favourable in the region η(x, y) < 0.
Competitive interactions in the free-energy functional will lead to phase separations in our
copolymer–copolymer mixture.

In terms of the free energy functional in equations (1)–(4), we can establish a set of three
coupled equations for the three order parameters; they are

∂η

∂ t
= Mη ∇2 δ F

δ η
, (6)

∂φ

∂ t
= Mφ ∇2 δ F

δ φ
, (7)

∂ξ

∂ t
= Mξ ∇2 δ F

δ ξ
, (8)

where Mη, Mφ , and Mξ are the positive transport coefficients.
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The numerical solutions of the above model system can be carried out in an L × L two-
dimensional square lattice under the periodic boundary conditions, by using the approach of
cell dynamical simulation (CDS) proposed by Oono and Puri [29, 30]. The CDS equations
corresponding to equations (6)–(8), in their space-time discretized forms, are written as
follows:

η(x, y, t +
 t) = η(x, y, t) + Mη(〈〈Iη〉〉 − Iη), (9)

φ(x, y, t +
 t) = φ(x, y, t) + Mφ{(〈〈Iφ〉〉 − Iφ)− α [φ(x, y, t)− φ0]}, (10)

ξ(x, y, t +
 t) = ξ(x, y, t) + Mξ {(〈〈Iξ 〉〉 − Iξ )− β [ξ(x, y, t)− ξ0]}, (11)

where

Iη = −d1(〈〈η〉〉 − η)− Aη tanh η + η + b1φ − b11ξ − 1
2 b2φ

2 + 1
2 b22ξ

2, (12)

Iφ = −d2(〈〈φ〉〉 − φ)− Aφ tanh φ + φ + b1η − b2ηφ, (13)

Iξ = −d3(〈〈ξ〉〉 − ξ)− Aξ tanh ξ + ξ − b11η + b22ηξ. (14)

In equations (12)–(14), there are three similar terms −Aη tanh η + η, −Aφ tanh φ + φ, and
−Aρ tanh ρ + ρ. They are good approximations for the derivatives dv1 (η)/dη, dv2 (φ)/dφ,
and dv3 (ρ)/dρ according to the CDS method. These derivatives are the odd functions of
their order parameters corresponding to the even functions of the local free-energy densities
v1(η), v2(φ), and v3(ρ). It is understood that coefficients Aη, Aφ , and Aξ describe the local
free-energy densities. In general, they are larger than one [30]. An average for a variable Q
used in equations (9)–(14) is defined by

〈〈Q〉〉 = 1
6

∑
NN

Q + 1
12

∑
NNN

Q, (15)

where the subscripts NN and NNN stand for the nearest-neighbourand next-nearest-neighbour
cells, respectively.

Our simulations of the model system are performed by choosing the parameters with
L = 128, Aη = 1.3, Aφ = 1.1, Aξ = 1.1, d1 = 1.0, d2 = 0.5, d3 = 0.5, and
Mη = Mφ = Mρ = 1, according to the previous work. For the original cell dynamics
system, the lattice size (
x or 
y) and the time step (
t) are both set to be unity.

3. Numerical results and discussions

For a two-dimensional diblock copolymer–diblock copolymer mixture, one can study its phase
behaviour by suitably choosing the free parameters and using the CDS equations (9)–(14).
Beginning from a homogeneous distribution of monomers A, B, C, and D, the system will
evolve into a state of phase separations. It is interesting to point out that the homogeneous
distribution does not represent the equilibrium state of the system. In fact, the free energy,
especially its short-range part, provides a kind of chemical potential as well as the surface
tensions to drive the system from an unstable state to the stable state which characterizes
phase separations. However, it is necessary to take into account some numerical errors as
perturbations in the system to facilitate the transformation from the initial non-equilibrium
homogeneous state to an equilibrium inhomogeneous state. In our calculation, a random
distribution of very small fluctuations is imposed onto the initial state, then, as the system
is evolving, phase separations can take place. The process of phase separations includes
macrophase separation and microphase separation. In fact, macrophase and microphase evolve
almost sequentially. Following the macrodomain growth, the microdomain structures become
complex. In particular, the onion-ring structure can appear in the system. For clearness, we
denote the A-rich domain for φ > 0 and the B-rich domain for φ < 0, respectively, by the
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Figure 1. Pattern evolution of a two-dimensional lattice for α = 0.04, β = 0.03, b1 = 0.081,
b11 = 0.1, b2 = b22 = 0.2, and η̄ = 0.3. Phase A is represented by the grey region, phase B by
the light grey region, phase C by the black region, and phase D by the white region.

Figure 2. Pattern evolution of a two-dimensional lattice for η̄ = −0.3 while the other parameters
are the same as in figure 1. Phase A is represented by the grey region, phase B by the light grey
region, phase C by the black region, and phase D by the white region.

grey and light grey, whereas the C-rich domain for ξ > 0 and the D-rich domain for ξ < 0 by
the black and white colours, respectively.

An evolution process in formation of an onion-ring structure is displayed in figure 1 for
α = 0.04, β = 0.03, b1 = 0.081, b11 = 0.1, b2 = b22 = 0.2, and η̄ = 0.3, at times
corresponding to t = 10 000, 50 000, 2500 000, respectively. From figure 1, it is seen that
at t = 10 000 the phase separation is not obvious. In the evolution process, the macrophase
separation occurs first. With the macrophase separation proceeding the microphase separation
also emerges, as shown at t = 50 000 in figure 1. With the time step increased further, for
example at t = 2500 000, the pretty onion-ring structure appears in the C–D copolymer, which
coexists with the bicontinuous striped structure in the A–B copolymer. It is found that the grey
and black colours aggregate at the interface between the two kinds of copolymers, because
phase A and phase C are compatible with each other. From the formation of onion-rings, it
can be seen that this structure is the result of the competition between the b22 term and the b11

term as well as the b1 term. From our simulations, beautiful onion-ring structure is obtained
by adjusting b1 when b11 and b22 are fixed.

In order to investigate the effect from the relative concentrations of the two copolymers,
we change only the initial composition ratio of A–B copolymer and C–D copolymer. In
comparison with figure 1, figure 2 displays the evolution patterns for η̄ = −0.3 while the
other parameters are the same as in figure 1. From figure 2, it is easy to see that the evolution
patterns are roughly the reverse of those corresponding to figure 1. Now the C–D copolymer
is the dominant phase, in which the onion-rings are formed in the A–B copolymer.

To understand the onion-ring structure further, we examine in detail the dependence
of its stable structure on the phenomenological parameters b11, which is determined by
the interactions between monomers in the copolymers. Figure 3 displays the patterns at
t = 2500 000 with variation of the parameter b11 from 0.02 to 0.06. As b11 = 0.02, the
striped microdomains in the C–D copolymer are basically perpendicular to the macrodomain
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Figure 3. Patterns on a two-dimensional lattice for α = β = 0.03, b1 = 0.065, b2 = b22 = 0.2,
and η̄ = 0.3. (a) b11 = 0.02, (b) b11 = 0.024, (c) b11 = 0.04, (d) b11 = 0.044, (e) b11 = 0.047,
and (f) b11 = 0.06. Phase A is represented by the grey region, phase B by the light grey region,
phase C by the black region, and phase D by the white region.

interfaces, and the microdomain curvature in the C–D copolymer is small, as in figure 3(a).
With increasing b11, the stripes in the C–D copolymer start to bend, resulting in the striped
microdomains changing from almost perpendicular to partly parallel to the interfaces, as shown
in figure 3(b). As b11 increases again, the parallel part extends whereas the perpendicular part
decreases gradually, as shown in figures 3(c) and (d). Continuously increasing b11, almost all
of the striped microdomains become parallel to the macrodomain interfaces, and the pretty
onion-rings emerge in the C–D copolymer, as displayed in figures 3(e) and (f). From figure 3(f)
it can be seen that the striped microdomains are perfectly parallel to the macrodomain interface,
consequently realizing the transition of the striped microdomain structure from perpendicular
to parallel to the macrodomain interfaces.

From figures 3(a) to (f), it is found that the striped microdomains in the A–B copolymer
are parallel to the macrodomain interfaces at all times, and their structure does not change on
the whole. The process can be understood as follows: on one hand, the striped microdomain
structure in the A–B copolymer does not vary,because the effect of b11 on the A–B copolymer is
very weak. On the other hand, the striped microdomains in the C–D copolymer transit from the
perpendicular to parallel to the macrodomain interfaces with increasing b11. The parameter b11

represents the strength of the repulsive interaction of the A–B copolymer to the D phase in the
C–D copolymer. When b11 is small, the D phase is weakly affected by the A–B copolymer, so
the C phase and D phase can all aggregate in the macrodomain interfaces, resulting the striped
microdomains perpendicular to the macrodomain interfaces. As b11 increases, the strength
with which the D phase is acted on by the A–B copolymer also increases, and it makes the D
phase not favourable in the macrodomain interfaces, thereby the D phase at the macrodomain
interfaces diminishes, and the striped microdomains change from perfectly perpendicular to
partly parallel to the macrodomain interfaces. Finally, the interface of macrophase separation
is dominated perfectly by the C phase, resulting in the ring-like patterns.

In order to study the domain growth, we would calculate numerically the domain size
R(t) as a function of time. The domain size R(t) can be derived from the inverse of the first
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Figure 4. Time evolution of the macrodomain size as a characteristic length for figure 3.

moment of the structure factor S(k, t) as

R(t) = 2π/〈k(t)〉, (16)

where

〈 k(t)〉 =
∫

dk k S(k, t)

/∫
dk S(k, t). (17)

In fact, the structure factor S(k, t) is determined by the Fourier component of the spatial
concentration distribution [30]. The results are averaged over five independent runs.

Figures 4 shows the time evolution of the macrodomain size R(t) as a function of time in the
double-logarithmic plots; the curves correspond to the various cases in figure 3, respectively.
From figure 4, it is seen that as b11 changes from 0.02 to 0.06, the growth processes of
the macrodomain are almost invariant, only at the latest stage of time evolution is there a
little difference in the macrodomain size. This indicates that the interactions between the
monomers hardly influence the growth of macrodomains of onion-rings. In fact, the b11 term
mainly determines the morphology at the interfaces of macrodomains of onion-rings. From the
growth exponent in figure 4, it can be seen that the macrodomains of onion-rings grow slowly
in the early stage, but rapidly in the middle stage, especially in the stage from t = 200 000 to
t = 1000 000. In the later stage, the growth speed of macrodomains decreases again. From
figure 4 it can also be seen that with the value of b11 changing, the macrodomains of onion-rings
almost grow by the same growth exponent in the latest stage.

4. Conclusion

Based on the three-order-parameter model, we have studied the phase separations in a diblock
copolymer–diblock copolymer mixture. It has been found by the cell dynamics simulations
that the onion-ring structure for one copolymer would appear in the background of the other
copolymer. Macroscopically, from the local free-energy density, there is no doubt that the
beneficial condition for onion-rings is the strong repulsive interaction between the sum and
difference of one copolymer itself, as well as the attractive interaction between the sum of
one copolymer and the difference of the other copolymer; furthermore, microscopically, one
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strong local interaction between two kinds of monomers from two different copolymers
is necessary for the formation of onion-rings. It is expected that the efficient values of
these interactions between monomers are also related to the other parameters of the system.
It has been experimentally verified previously that the onion-ring structure occurs in a
homopolymer–copolymer mixture [10]. We can expect this structure would also emerge in a
copolymer–copolymermixture. We have examined in detail the formation process and domain
growth of the onion-ring structure, and obtained various onion-rings by choosing suitable
phenomenological parameters, which are determined by the interactions between monomers
and the polymerization indices of copolymers.

It is worth mentioning that we have mainly concerned with the ordering and phase
separations in copolymer–copolymer mixtures. Our present simulations are based on the
time-dependent Ginzburg–Landau theory, with closely related cell dynamical simulations,
which is suitable to study the dynamical process of the system and save time of computations.
This phenomenological approach, as is concise and universal, can successfully describe the
time evolution in macrophase separation as well as microphase separation. However, it is
limited in describing morphological minutiae. If the structural details must be considered,
and the equilibrium properties are much more concerned with, we should take advantage of
more powerful field-theoretical methods, such as the self-consistent field theory or dynamic
density functional theory. The present model and simulations provide beneficial suggestions for
experimentally realizing onion-ring structure on phase-separation films consisting of diblock
copolymer–diblock copolymer mixtures.
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